

Feature-compatible Progressive Learning for Video Copy Detection

Wenhao Wang, Yifan Sun, Yi Yang

ReLER, University of Technology Sydney

Baidu Inc.

Zhejiang University

Background

- Our second place solutions to the Meta AI Video Similarity Challenge (VSC22), CVPR 2023
- Matching track: identifies specific clips
- Descriptor track: **512-dimensional vector** representations
- Inspirations from: ISC21-winning solutions (FOSSL [1], and CNNCL [2])
- Built on: our previous work (BoT, D²LV, ASL)

[1] Fossl: Feature compatible self-superviseded learning for large-scale image similarity detection.[2] Contrastive learning with large memory bank and negative embedding subtraction for accurate copy detection.

Base Training

- Generate edited copies
- Use training image from ISC21
- Design 20+ transformations
- Perform deep metric learning
- CosFace Loss
- Backbone: CotNet

Feature-compatible Learning

• L₂ distance

$$\mathcal{L}_{ ext{com}} \, = \sum_{i=0}^{N} \left\| rac{f(x_{o_i})}{\|f(x_{o_i})\|_2} - rac{g(x_{o_i})}{\|g(x_{o_i})\|_2}
ight\|_2$$

• Final loss

$$\mathcal{L}_{ ext{final}} = \mathcal{L}_{ ext{mtr}} + \lambda_r \cdot \mathcal{L}_{ ext{com}}$$

Backbones

ResNet-50, ResNext-50, SKNet-50, ViT, Swin Transformer, and T2T-ViT

Feature-compatible Learning

With Compatible-Learning

- Base feature of edit copies
- New 1 feature of edit copies O
- New 2 feature of edit copies
- New N feature of edit copies ○

- Base feature of an original image
- New 1 feature of an original image
- New 2 feature of an original image
- pies O New N feature of an original image

- Ensemble
- query:

- reference:

Fine-tuning on the GT pairs

$$egin{aligned} \mathcal{L}_{ ext{pos}} &= \sum_{i=0}^{M} \left\| rac{g_t(x_{p_i}^1)}{\left\| g_t(x_{p_i}^1)
ight\|_2} - rac{g_t(x_{p_i}^2)}{\left\| g_t(x_{p_i}^2)
ight\|_2}
ight\|_2 \ \mathcal{L}_{neg} &= rac{1}{2} \sum_{i=0}^{M} \left(\left\| rac{g_t(x_{p_i}^1)}{\left\| g_t(x_{p_i}^1)
ight\|_2} - rac{g_t(x_{n_i}^1)}{\left\| g_t(x_{n_i}^1)
ight\|_2}
ight\|_2 \ &+ \left\| rac{g_t(x_{p_i}^2)}{\left\| g_t(x_{p_i}^2)
ight\|_2} - rac{g_t(x_{n_i}^2)}{\left\| g_t(x_{n_i}^2)
ight\|_2}
ight\|_2 \end{aligned}$$

$$\mathcal{L}_{ ext{final}} = \mathcal{L}_{ ext{mtr}} \, + \lambda_r \cdot \mathcal{L}_{ ext{com}} \, + \lambda_{ ext{pn}} \, \cdot (\mathcal{L}_{ ext{pos}} \, - \mathcal{L}_{ ext{neg}})$$

Visualization

Similarity = 0.45

Similarity = 0.35

Similarity = 0.25

Similarity = 0.15

Similarity = 0.05

Similarity = -0.05

Similarity = -0.15

Similarity = -0.25

Comparison

Matching track

Descriptor track

Team	$\mu AP(\%)\uparrow$
do something more	91.53
CompetitionSecond (Ours)	77.11
cvl-matching	70.36
People-AI	50.72
Baseline	44.11
• • •	•••

Team	$\mu AP(\%)\uparrow$
do something	87.17
FriendshipFirst (Ours)	85.14
cvl-descriptor	83.62
Zihao	77.29
People-AI	68.84
Baseline	60.47
• • •	• • •

Thanks for your listening