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Introduction

TransHP improves the accuracy, data efficiency,
and explainability of the transformer.
Ø Accuracy. TransHP brings consistent

improvement on multiple popular transformer
backbones and five image classification datasets.
For example, on ImageNet, TransHP improves
ViT-B/16 by +2.83% top-1 accuracy.

Ø Data efficiency. While reducing the training data
inevitably compromises the accuracy, TransHP
maintains better resistance against the insufficient
data problem. For example, when we reduce the
training data of ImageNet to 10%, TransHP
enlarges its improvement over the baseline to
+12.69%.

Ø Explainability. Through visualization, we observe
that the proposed TransHP shares some similar
patterns with human visual recognition, e.g., taking
an overview for coarse recognition and then
focusing on some critical local regions for the
subsequent recognition after prompting.

ExperimentsTransformer with Hierarchical Prompting
Ø TransHP improves the accuracy.

Ø TransHP gradually focuses on the predicted coarse
class when absorbing the prompts, yielding an
autonomous selection.

Ø TransHP improves model explainability.

Ø TransHP improves data efficiency.

A Prompting Block in TransHP TransHP Focuses on the Target Prompt

Ø Autonomous prompt selection of TransHP.
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Figure 2: (i) A prompting block in TransHP. Instead of manually selecting the prompt of the
coarse class, the prompting block pre-pends the whole prompt pool consisting of M prompts (M is
the number of coarse classes) and performs autonomous selection. Specifically, it learns to predict
the coarse class (Section 3.2) and spontaneously selects the corresponding prompt for absorption
through soft weighting (Section 3.4), i.e., the predicted class has the largest absorption weight. (ii)
Autonomous prompt selection. We visualize the absorption weights of all the 20 coarse-class
prompts for some CIFAR-100 images. It shows how TransHP selects the prompts when the coarse
class prediction is correct (a and b), ambiguous (c and d), and incorrect (e and f ), respectively. The
red and green columns correspond to the ground-truth (GT) class and the false classes, respectively.
The detailed investigation is in Section 3.4.

3.1 Preliminaries

Vision Transformer (ViT) first splits an image into N patches (
�
xi 2 R3⇥P⇥P | i = 1, 2, . . . , N

 
,

where P ⇥ P is the patch size) and then embeds each patch into a C-dimensional embedding by
xi = Embed (xi). Afterward, ViT concatenates a class token x0

cls 2 RC to the patch tokens and
feed them into the stacked transformer blocks, which is formulated as:⇥
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cls,X

l
⇤
= Bl
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xl�1
cls ,Xl�1

⇤�
, l = 1, 2, . . . , L (1)

where xl
cls and Xl are the class token and the patch tokens after the l-th transformer block Bl,

respectively. After the total L blocks, the final state of the class token (xL
cls) is viewed as the

deep representation of the input image and is used for class prediction. In this paper, we call the
concatenation of class token and patch tokens (i.e.,

⇥
xl�1
cls ,Xl�1

⇤
) as the feature tokens.

Prompting was first introduced in Natural Language Processing to switch the same transformer
model for different tasks by inserting a few hint words into the input sentences. More generally, it
conditions the transformer to different tasks, different domains, etc, without changing the transformer
parameters but only changing the prompts. To condition the model for the k-th task (or domain), a
popular practice is to select a prompt pk from a prompt pool P = {p0,p1, · · · } and pre-pend it to
the first block. Correspondingly, Eqn. 1 turns into:
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k

⇤�
, (2)

where pk 2 P (the superscript is omitted) conditions the transformer for the k-th task.

3.2 The Prompting Block of TransHP

The proposed TransHP selects an intermediate transformer block Bl and reshapes it into a prompting
block for injecting the coarse-class information. Let us assume that there are M coarse classes.
Correspondingly, TransHP uses M learnable prompt tokens PM = [p0,p1, ...,pM�1] to represent
these coarse classes. Our intention is to inject pk into the prompting layer, if the input image belongs
to the k-th coarse class.

Instead of manually selecting the k-th prompt pk (as in Eqn. 2), TransHP pre-pends the whole
prompting pool PM = [p0,p1, ...,pM�1] to the prompting layer and makes the prompting layer
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Figure 1: The comparison between Vision Transformer (ViT) and the proposed Transformer with
Hierarchical Prompting (TransHP). In (a), ViT attends to the overall foreground region and recognizes
the goldfish from the 1000 classes in ImageNet. In (b), TransHP uses an intermediate block to
recognize the input image as belonging to the fish family and then injects the corresponding prompt.
Afterward, the last block attends to the face and crown, which are particularly informative for
distinguishing the goldfish against other fish species. Please refer to Fig. 5 for more visualizations.
Note that TransHP may have multiple prompting blocks corresponding to multi-level hierarchy.

[5, 6, 7], domains [8], etc. In this paper, we inject coarse-class prompt into the intermediate stage of
a transformer. The injected coarse-class prompt will then modify the following feature extraction for
this specific coarse class, yielding the so-called hierarchical prompting. To the best of our knowledge,
explicitly injecting the coarse class information as a prompt has never been explored in the HIC
community.

We model our hierarchical prompting mechanism into a Transformer with Hierarchical Prompting
(TransHP). Fig. 1 compares our TransHP against a popular transformer backbone ViT [9]. TransHP
consists of three steps: 1) TransHP learns a set of prompt tokens to represent all the coarse classes and
selects an intermediate block as the “prompting block” for injecting the prompts. 2) The prompting
block on-the-fly predicts the coarse class of the input image. 3) The prompting block injects the
prompt token of the predicted class (i.e., the target prompt token) into the intermediate feature.
Specifically, TransHP concatenates the prompt tokens with feature tokens (i.e., the “class” token and
the patch tokens) from the preceding block, and then feeds them into the prompting block, where the
feature tokens absorb information from the target prompt through cross-attention 2.

Although TransHP is based on the prompting mechanism of the transformer, it has fundamental
differences against prior transformer prompting techniques. A detailed comparison is in Section 2.
We hypothesize this hierarchical prompting will encourage TransHP to dynamically focus on the
subtle differences among the descendant classes. Fig. 1 validates our hypothesis by visualizing the
attention map of the final-block class token. In Fig. 1 (a), given a goldfish image, the baseline model
(ViT) attends to the whole body for recognizing it from the entire 1000 classes in ImageNet. In
contrast, in Fig. 1 (b), since the intermediate block has already received the prompt of “fish”, TransHP
mainly attends to the face and crown which are particularly informative for distinguishing the goldfish
against other fish species. Please refer to Section 4.4 for more visualization examples.

We conduct extensive experiments on multiple image classification datasets (e.g., ImageNet [10] and
iNaturalist [11]) and show that the hierarchical prompting improves the accuracy, data efficiency
and explainability of the transformer: (1) Accuracy. TransHP brings consistent improvement on

2In practice, the absorption is in a “soft” manner which assigns all the prompt tokens with soft weights.
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Figure 3: TransHP gradually focuses on the predicted coarse class when absorbing the prompts,
yielding an autonomous selection. (a) The absorption weight of the target prompt. (b) The ratio of
the target prompt weight against the largest non-target prompt weight. The dataset is CIFAR-100.
We visualize these statistics on both the training and validation sets.

3.4 TransHP Spontaneously Selects the Target Prompt

We recall that we do not manually select the coarse-class prompt for TransHP. Instead, we concatenate
the entire prompt set, i.e., PM = {p1,p2, · · · ,pM}, with the feature tokens. In this section, we will
show that after TransHP is trained to convergence, the prompting block will spontaneously select the
target prompt pk (k is the predicted coarse class) for absorption and largely neglect the non-target
prompts pi 6=k.

Specifically, the self-attention in the transformer make each token absorb information from all the
tokens (i.e., the feature tokens and the prompt tokens). In Eqn. 3, given a feature token x 2 [xcls,X]
(the superscript is omitted for simplicity), we derive its absorption weights on the i-th prompt token
from the self-attention, which is formulated as:

w(x pi) =
exp (Q(x)TK(pi)/

p
d)

P
exp (Q(x)>K([xcls,X,PM ])/

p
d)

, (7)

where Q() and K() project the input tokens into query and keys, respectively. d is the scale factor.

Based on the absorption weights, we consider two statistics:

• The absorption weight of the target prompt, i.e., w(x  pk). It indicates the importance of the
target prompt among all the tokens.

• The absorption ratio between the target / largest non-target prompt, i.e., R(T:N) = w(x  
pk)/max{w(x pi 6=k)}. It measures the importance of the target prompt compared with the most
prominent non-target prompt.

Fig. 3 visualizes these statistics at each training epoch on CIFAR-100 [25], from which we make two
observations:

Remark 1: The importance of the target prompt gradually increases to a high level. From Fig. 3
(a), it is observed that the absorption weight on the prompt token undergoes a rapid increase and
finally reaches about 0.09. We note that 0.09 is significantly larger than the averaged weight 1/217 (1
class token + 196 patch tokens + 20 prompt tokens).

Remark 2: The target prompt gradually dominates among all the prompts. From Fig. 3 (b), it is
observed that the absorption weight on the target prompt gradually becomes much larger than the
non-target prompt weight (about 4⇥).

Combining the above two observations, we infer that during training, the prompting block of TransHP
learns to focus on the target prompt pk (within the entire prompt pool PM ) for prompt absorption
(Remark 2), yielding a soft-weighted selection on the target prompt. This dynamic absorption on the
target prompt largely impacts the self-attention in the prompting layer (Remark 1) and conditions the
subsequent feature extraction.
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Table 3: TransHP brings consistent improvement on various backbones on ImageNet.

Accuracy (%) ViT-B/16 ViT-L/16 DeiT-S DeiT-B
Baseline 76.68⇤ 76.37⇤ 79.82 81.80
TransHP 79.51 78.80 80.55 82.35

⇤ The performance of our reproduced ViT-B/16 and ViT-L/16 are slightly worse than 77.91 and 76.53 in its
original paper [9], respectively.

Table 4: Comparison between TransHP and two most recent state-of-the-art methods. We replace
their CNN backbones with the relatively strong transformer backbone for fair comparison.

Accuracy (%) ImageNet iNat-2018 iNat-2019 CIFAR-100 DeepFashion
Baseline 76.21 63.01 69.31 84.98 88.54
Guided 76.05 63.11 69.66 85.10 88.32

HiMulConE 77.52 63.46 70.87 85.43 88.87
TransHP 78.65 64.21 71.62 86.85 89.93

several Lcoarses, the training time increases by 15% on our baseline and 12% on ViT-B for ImageNet.
For inference, the computation overhead is very light. The baseline and TransHP both use around 50
seconds to finish the ImageNet validation with 8 A100 GPUs.

4.2 TransHP Improves the Accuracy

Improvement on ImageNet and the ablation study. We validate the effectiveness of TransHP on
ImageNet and conduct the ablation study by comparing TransHP against two variants, as well as the
baseline. As illustrated in Fig. 4, the two variants are: 1) we do not inject any prompts, but use the
coarse labels to supervise the class token in the intermediate layers: similar with the final fine-level
classification, the class token is also used for coarse-level classification. 2) we inject learnable tokens,
but do not use the coarse labels as their supervision signal. Therefore, these tokens do not contain
any coarse class information. From Fig. 4, we draw three observations as below: 1) Comparing
TransHP against the baseline, we observe a clear improvement of +2.44% top-1 accuracy, confirming
the effectiveness of TransHP on ImageNet classification. 2) Variant 1 (“No prompts”) achieves
some improvement (+1.37%) over the baseline as well, but is still lower than TransHP by �1.07%.
It shows that using the hierarchical labels to supervise the intermediate state of the class token is
also beneficial. However, since it does not absorb the prompting information, the improvement is
relatively small. We thus infer that the hierarchical prompting is a superior approach for utilizing
the hierarchical labels. 3) Variant 2 (“No coarse labels”) barely achieves any improvement over the
baseline, though it also increases the same amount of parameters as TransHP. It indicates that the
benefit of TransHP is not due to the increase of some trainable tokens. Instead, the coarse class
information injected through the prompt tokens matters.

TransHP gains consistent improvements on more datasets. Besides the most commonly used
dataset ImageNet, we also conduct experiments on some other datasets, i.e., iNaturalist-2018,
iNaturalist-2019, CIFAR-100 and DeepFashion. For these datasets, we use two settings, i.e., training
from scratch (w/o Pre) and finetuning from the ImageNet-pretrained model (w Pre). The experimental
results are shown in Table 2, from which we draw two observations. First, under both settings,
TransHP brings consistent improvement over the baselines. Second, when there is no pre-training, the
improvement is even larger, especially on small datasets. For example, we note that on the smallest
CIFAR-100, the improvement under “w/o Pre” and “w Pre” are +5.32% and +1.87%, respectively.
We infer it is because TransHP considerably alleviates the data-hungry problem of the transformer,
which is further validated in Section 4.3.

TransHP improves various backbones. Besides the light transformer baseline used in all the other
parts of this section, Table 3 evaluates the proposed TransHP on some more backbones, i.e., ViT-B/16
[9], ViT-L/16 [9], DeiT-S [27], and DeiT-B [27]. We observe that for the ImageNet classification,
TransHP gains 2.83%, 2.43%, 0.73%, and 0.55% improvement on these four backbones, respectively.

Comparison with state-of-the-art hierarchical classification methods. We compare the proposed
TransHP with two most recent hierarchy-based methods, i.e. Guided [3], HiMulConE [4]. We do not
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Table 5: Comparison between TransHP and prior state-of-the-art hierarchical classification methods
under the insufficient data scenario. “N%" means using N% ImageNet training data.

Accuracy (%) 100% 50% 20% 10%
Baseline 76.21 67.87 44.60 25.24
Guided 76.05 67.74 45.02 25.67

HiMulConE 77.52 69.23 48.50 30.76
TransHP 78.65 70.74 53.71 37.93

include more competing methods because most prior works are based on the convolutional backbones
and are thus not directly comparable with ours. Since the experiments on large-scale datasets is very
time-consuming, we only select the most recent state-of-the-art methods and re-implement them on
the same transformer backbone (based on their released code). The experimental results are shown in
Table 4. It is clearly observed that the proposed TransHP achieves higher improvement and surpasses
the two competing methods. For example, on the five datasets, TransHP surpasses the most recent
state-of-the-art HiMulConE by +1.13% (ImageNet), +0.75% (iNat-2018), +0.75% (iNat-2019),
+1.42% (CIFAR-100) and 1.06% (DeepFashion), respectively. We also notice that while Guided
achieves considerable improvement on the CNN backbones, its improvement over our transformer
backbone is trivial. This is reasonable because improvement over higher baseline (i.e., the transformer
backbone) is relatively difficult. This observation is consistent with [4].

4.3 TransHP Improves Data Efficiency

We investigate TransHP under the data-scarce scenario. To this end, we randomly select 1/10, 1/5,
and 1/2 training data from each class in ImageNet (while keeping the validation set untouched). The
results are summarized in Table 5, from which we draw three observations as below:

First, as the training data decreases, all the methods undergo a significant accuracy drop. This is
reasonable because the deep learning method in its nature is data-hungry, and arguably this data-
hungry problem is further underlined in transformer [9]. Second, compared with the baseline and
two competing hierarchy-based methods, TransHP presents much higher resistance against the data
decrease. For example, when the training data is reduced from 100% ! 10%, the accuracy drop of
the baseline and two competing methods are 50.97%, 50.38% and 46.76%, respectively. In contrast,
the accuracy drop of the proposed TransHP (40.72%) is significantly smaller. Third, since TransHP
undergoes relatively smaller accuracy decrease, its superiority under the low-data regime is even larger.
For example, its surpasses the most competing HiMulConE by 1.13%, 1.51%, 5.21% and 7.17%
under the 100%, 50%, 20% and 10% training data, respectively. Combining all these observations,
we conclude that TransHP improves the data efficiency. The efficiency can be explained intuitively by
drawing upon two perspectives, one philosophical and the other technical. Philosophical Perspective:
Imagine knowledge as the essence of everything humans have summarized over time. When you
possess knowledge, you have the distilled essence of myriad experiences and learnings. The proposed
method leverages this accumulated knowledge. In scenarios where data is limited, the power of such
distilled knowledge becomes even more pronounced. Technical Perspective: Now, think of data not
just as isolated pieces of information but in categories. Even when the dataset might seem limited,
there could still be ample samples within broader categories. This means that for these ’coarser’
categories, accuracy can be achieved rapidly. Once the accuracy at this coarse level is established, the
model can then use this foundation to prompt further. It’s like planting a tree - you start with a strong
base and then branch out.

4.4 TransHP Improves Model Explainability

We analyze the receptive field of the class token to understand how TransHP reaches its prediction.
Basically, the transformer integrates information across the entire image according to the attention
map, yielding its receptive field. Therefore, we visualize the attention map of the class token in Fig. 5.
For the proposed TransHP, we visualize the attention map at the prompting block (which handles the
coarse-class information) and the last block (which handles the fine-class information). For the ViT
baseline, we only visualize the attention score map of the the last block. We draw two observations
from Fig. 5:
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