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. Pre-training

Unsupervised pre-training on ImageNet using Barlow Twins [1].

Why?

Unsupervised pre-training

The granularity of a category is the same in ISC2021 and self-

supervised learning.

Choice?

Moco, BYOL, SWAYV, Barlow Twins, SimSiam, ...

[1] Jure Zbontar, et al. Barlow twins: Self-supervised learning via redundancy reduction. In ICML, 2021.



. Training

Training methods
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WaveBlock [1]

[1] Wenhao Wang, et al. Attentive WaveBlock: Complementarity-enhanced Mutual Networks B - @ R h
for Unsupervised Domain Adaptation in Person Re-identification and Beyond. In Preprint, 2020. al esearc



. Training

One set of designed augmentations

Basic augmentation
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. Test

Descriptor Stretching VS Score Normalization

Descriptor Stretching Score Normalization

1. Purpose: To make the similarity 1. Purpose: To make the similarity
values comparable across different values comparable across different
queries; queries;

2. Subject: Features. 2. Subject: Scores.

Therefore, in this track, we use Descriptor Stretching to replace Score Normalization.
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. Test

Descriptor Stretching Given the feature of a query image q;, and a reference image

71, the original score s;is defined as

— —
s1=|q1 — 11l

e Similarly, we have:
s.=lqz — 7l

If s; > s,, q, is more similar to 7; than g;, and vice versa.

The definition of descriptor stretching is

Training feature - SN
ery feature =a-*Ss *
Query featu q1 n, " 41

Reference feature

Stretched query feature
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. Test

—

— —
q1 = & Sn, * q1,

Descriptor Stretching

qz

Training feature

Query feature
Reference feature
Stretched query feature

where: a 1s a hyper-parameter, and s, is the mean of top n

inner product scores between g; and the features of images

from the training set. Then the stretched score §; is defined as:
Si=la -7

Similarly, we have:

—

ﬁ}=a‘5n2’@:
S=la; -7l

After stretching, we use the stretched feature of a query image
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. Experiments

Ablation Studies

Score
Method Micro-average Precision Recall @Precision 90
Supervised 0.39089 0.18133
Unsupervised 0.53218 0.29693
+ Des-Str 0.70481 0.61631
+ Det 0.71487 0.62913
-+ Multi 0.73017 0.63975
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. Experiments

Comparison with State-of-the-Arts

Team Score
Micro-average Precision Recall @Precision 90

lyakaap 0.6354 0.6354
S-square 0.5905 0.5086
Ours 0.5788 0.4886
forthedream?2 0.5736 0.4980
Zihao 0.5461 0.4813
separate 0.5312 0.3169
AlTechnology 0.5253 0.4191
GIST [24] 0.0526 —
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. Pre-training

Unsupervised pre-training on ImageNet using BYOL [1] and Barlow Twins [2].

Why?

Unsupervised pre-training

The granularity of a category is the same in ISC2021 and self-

supervised learning.

Choice?

Moco, BYOL, SwAV, Barlow Twins, SimSiam, ...

[1] Grill Jean-Bastien, et al. Bootstrap your own latent: a new approach to self-supervised learning. NIPS 2020,
[2] Jure Zbontar, et al. Barlow twins: Self-supervised learning via redundancy reduction. In ICML, 2021.



. Training

Training methods
Cross entropy loss

Triplet loss \

\ Projector

Backbone

GeM
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2048-dim 8192-dim

WaveBlock [1] features features

[1] Wenhao Wang, et al. Attentive WaveBlock: Complementarity-enhanced Mutual Networks B - @ R h
for Unsupervised Domain Adaptation in Person Re-identification and Beyond. In Preprint, 2020. al esearc



. Training

11 sets of designed augmentations generate 11 datasets:

Training on each dataset separately.

1. Basic augmentation
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. Training

2. Basic + Super-blur augmentation
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. Training

4. Basic + Super-dark augmentation

3
=
:
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. Training

6. Basic + Super-opaque augmentation
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. Training

Grayscale augmentation
The augmentation changes all the color images into grayscale style.

Some examples
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. Test

Two corner cases:
(1) Some query images are generated by overlaying a reference image on top of a

distractor image.
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. Test

(2) Some queries are cropped from the reference images and thus only contain parts of the

reference images.
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Global-local matching strategy

Local-global matching strategy
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Test

Generate local features of query images

Crop centers

Original image Cropped centers
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. Test

Generate local features of query images

Selective search

Original image
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. Test

Generate local features of query images

Detection

Original image
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Test

Rotating

Original image
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. Test

Generate local features of reference images

1) Dividing into 5 large parts

AL
il

e aal

Original image Divided images
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. Test

Generate local features of reference images

1) Dividing into 5 large parts 2) Dividing into 13 small parts

Original image Divided images
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. Experiments

Ablation Studies

Score
Method Micro-average Precision Recall @Precision 90
Supervised 0.68726 0.54678
Unsupervised 0.70813 0.62773
Global-local 0.82726 0.74755
Both 0.83720 0.75155
Adv-Aug 0.88640 0.80124
Multi+Tricks 0.90035 0.81887
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. Experiments

Comparison with State-of-the-Arts

Team Score
Micro-average Precision Recall @Precision 90

Ours 0.8329 0.7309
separate 0.8291 0.7917
imgFp 0.7682 0.6715
forthedream 0.7667 0.7218
titanshield 0.7613 0.7557
VisonGroup 0.7169 0.5963
mmcf 0.7107 0.5986
MultiGrain[?] 0.2761 0.2023
GIST [23] 0.0526 —
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