

1st and 3nd Solutions to FaceBook AI Image Similarity Challenge

Speaker: Wenhao Wang

VisionForce (Wenhao Wang, Yifan Sun, Weipu Zhang and Yi Yang)

Baidu Research

Bag of Tricks and A Strong Baseline For Image Copy Detection

3nd Solution to Descriptor Track

Authors: Wenhao Wang, Weipu Zhang, Yifan Sun, Yi Yang

Baidu Research

Pipeline

Pre-training

Unsupervised pre-training on ImageNet using Barlow Twins [1].

The granularity of a category is the same in ISC2021 and selfsupervised learning.

Choice?

Why?

Moco, BYOL, SwAV, Barlow Twins, SimSiam, ...

[1] Jure Zbontar, et al. Barlow twins: Self-supervised learning via redundancy reduction. In ICML, 2021.

Training methods

[1] Wenhao Wang, et al. Attentive WaveBlock: Complementarity-enhanced Mutual Networks for Unsupervised Domain Adaptation in Person Re-identification and Beyond. In Preprint, 2020.

One set of designed augmentations

Basic augmentation

Descriptor Stretching VS Score Normalization

Descriptor Stretching

- Purpose: To make the similarity values comparable across different queries;
- 2. Subject: Features.

- Score Normalization
- Purpose: To make the similarity values comparable across different queries;
- 2. Subject: Scores.

Therefore, in this track, we use *Descriptor Stretching* to replace Score Normalization.

Given the feature of a query image $\vec{q_1}$, and a reference image $\vec{r_1}$, the original score s_1 is defined as $s_1 = |\vec{q_1} - \vec{r_1}|.$

Similarly, we have:

 $s_2 = |\overrightarrow{q_2} - \overrightarrow{r_1}|.$

If $s_1 > s_2$, $\overrightarrow{q_2}$ is more similar to $\overrightarrow{r_1}$ than $\overrightarrow{q_1}$, and vice versa. The definition of descripton stratching is

The definition of descriptor stretching is

$$\overrightarrow{\widehat{q_1}} = \alpha \cdot s_{n_1} \cdot \overrightarrow{q_1},$$

$$\overrightarrow{\widehat{q_1}} = \alpha \cdot s_{n_1} \cdot \overrightarrow{q_1},$$

Descriptor Stretching

where: α is a hyper-parameter, and s_{n_1} is the mean of top ninner product scores between $\overrightarrow{q_1}$ and the features of images from the training set. Then the stretched score $\widehat{s_1}$ is defined as:

$$\widehat{s_1} = |\overrightarrow{\widehat{q_1}} - \overrightarrow{r_1}|.$$

Similarly, we have:

$$\overrightarrow{\widehat{q_2}} = \alpha \cdot s_{n_2} \cdot \overrightarrow{q_2},$$
$$\overrightarrow{s_2} = |\overrightarrow{\widehat{q_2}} - \overrightarrow{r_1}|.$$

After stretching, we use the stretched feature of a query image

as its final descriptor.

Ablation Studies

Method	Score		
	Micro-average Precision	Recall@Precision 90	
Supervised	0.39089	0.18133	
Unsupervised	0.53218	0.29693	
+ Des-Str	0.70481	0.61631	
+ Det	0.71487	0.62913	
+ Multi	0.73017	0.63975	

Experiments

Comparison with State-of-the-Arts

Team	Score	
	Micro-average Precision	Recall@Precision 90
lyakaap	0.6354	0.6354
S-square	0.5905	0.5086
Ours	0.5788	0.4886
forthedream2	0.5736	0.4980
Zihao	0.5461	0.4813
separate	0.5312	0.3169
AITechnology	0.5253	0.4191
•••	•••	•••
GIST [24]	0.0526	_

D²LV: A Data-Driven and Local-Verification Approach for Image Copy Detection

1st Solution to Matching Track

Authors: Wenhao Wang, Yifan Sun, Weipu Zhang, Yi Yang

Baidu Research

Pipeline

Pre-training

Unsupervised pre-training on ImageNet using BYOL [1] and Barlow Twins [2].

The granularity of a category is the same in ISC2021 and selfsupervised learning.

Choice?

Why?

Moco, BYOL, SwAV, Barlow Twins, SimSiam, ...

[1] Grill Jean-Bastien, et al. Bootstrap your own latent: a new approach to self-supervised learning. NIPS 2020,[2] Jure Zbontar, et al. Barlow twins: Self-supervised learning via redundancy reduction. In ICML, 2021.

Training

Training methods

[1] Wenhao Wang, et al. Attentive WaveBlock: Complementarity-enhanced Mutual Networks for Unsupervised Domain Adaptation in Person Re-identification and Beyond. In Preprint, 2020.

11 sets of designed augmentations generate 11 datasets:

Training on each dataset *separately*.

1. Basic augmentation

2. Basic + Super-blur augmentation

3. Basic + Super-color augmentation

4. Basic + Super-dark augmentation

5. Basic + Super-face augmentation

6. Basic + Super-opaque augmentation

7. Basic + Super-occlude augmentation

Grayscale augmentation

The augmentation changes all the color images into grayscale style.

Some examples

Research

Two corner cases:

(1) Some query images are generated by overlaying a reference image on top of a distractor image.

(2) Some queries are cropped from the reference images and thus only contain parts of the reference images.

Global-local matching strategy

Local-global matching strategy

Generate local features of query images

Crop centers

Original image

Cropped centers

Generate local features of query images

Selective search

i de Research

Ba

Generate local features of query images

Detection

Original image

Test

Rotating

Original image

Generate local features of reference images

1) Dividing into 5 large parts

Original image

Divided images

Generate local features of reference images

1) Dividing into 5 large parts 2) Dividing into 13 small parts

Original image

Divided images

Experiments

Ablation Studies

Method	Score	
	Micro-average Precision	Recall@Precision 90
Supervised	0.68726	0.54678
Unsupervised	0.70813	0.62773
Global-local	0.82726	0.74755
Both	0.83720	0.75155
Adv-Aug	0.88640	0.80124
Multi+Tricks	0.90035	0.81887

Comparison with State-of-the-Arts

Team	Score	
	Micro-average Precision	Recall@Precision 90
Ours	0.8329	0.7309
separate	0.8291	0.7917
imgFp	0.7682	0.6715
forthedream	0.7667	0.7218
titanshield	0.7613	0.7557
VisonGroup	0.7169	0.5963
mmcf	0.7107	0.5986
•••		
MultiGrain[2]	0.2761	0.2023
GIST [23]	0.0526	—

